A Stabilizing and Robustifying Training Scheme for Artificial Neural Networks Used in Control of Complex Systems
نویسندگان
چکیده
This paper presents a method for stabilizing and robustifying the artificial neural networks trained by utilizing the gradient descent. The method proposed constructs a dynamic model of the conventional update mechanism and derives the stabilizing values of the learning rate. The stability in this context corresponds to the convergence in adjustable parameters of the neural network structure. It is shown that the selection of the learning rate as imposed by the proposed algorithm results in stable training in the sense of Lyapunov. Furthermore, the algorithm devised filters out the high frequency dynamics of the gradient descent method. The method analyzed in this paper integrates the gradient descent technique with variable structure systems methodology. In the simulations, control of a three degrees of freedom anthropoid robot is chosen for the evaluation of the performance.
منابع مشابه
Designing an expert system for differential diagnosis of β-Thalassemia minor and Iron-Deficiency anemia using neural network
Introduction: Artificial neural networks are a type of systems that use very complex technologies and non-algorithmic solutions for problem solving. These characteristics make them suitable for various medical applications. This study set out to investigate the application of artificial neural networks for differential diagnosis of thalassemia minor and iron-deficiency anemia. Methods: It is...
متن کاملEffect of Distributed Energy Resources in Energy Hubs on Load and Loss Factors of Energy Distribution Networks
In this paper, an attempt has been made to introduce a new control strategy including Plug-in Hybrid Electric Vehicle (PHEV) and Diesel engine generator to control the voltage and frequency of autonomous microgrids. The proposed control strategy has multiple advantages over the recent control methods in microgrids. The proposed method applies the primary and secondary frequency control strategy...
متن کاملRobust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers
In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...
متن کاملPrediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks
The artificial neural networks, the learning algorithms and mathematical models mimicking the information processing ability of human brain can be used non-linear and complex data. The aim of this study was to predict the breeding values for milk production trait in Iranian Holstein cows applying artificial neural networks. Data on 35167 Iranian Holstein cows recorded between 1998 to 2009 were ...
متن کاملApplication of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)
This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...
متن کامل